Loading [MathJax]/jax/element/mml/optable/MathOperators.js

Bernoulli Distribution Example - Likelihood Ratio

Example) I have no idea where I found this example, sorry!

Y_{1},...,Y_{n} denote a random sample from Bernoulli P(Y_{i}|p)=p^{y_{i}}(1-p)^{1-y_{i}} , where y_{i}=0 or 1. Suppose H_{0}:P=P_{0}H_{1}:P=P_{a}, where P_{0} < P_{a}

(a) Show that  \frac{L(P_{o})}{L(P_{a})}=[\frac{P_{0}\cdot (1-P_{a})}{(1-P_{0}) \cdot P_{a}}]^{\sum y_{i}}\cdot (\frac{1-P_{0}}{1-P_{a}})^n 
(b) Argue that \frac{L(P_{o})}{L(P_{a})} < K iff \sum y_{i} < k 


\triangleright Solution (a)
\frac{L(P_{o})}{L(P_{a})}=\frac{P_{0}^{\sum y_{i}}\cdot (1-P_{0}^{\sum y_{i}})}{P_{a}^{\sum y_{i}}\cdot (1-P_{a})^{n-\sum y_{i}}} =\frac{\frac {P_{0}}{1-P_{0}}^{\sum y_{i}}\cdot (1-P_{0})^n}{\frac {P_{a}}{1-P_{a}}^{\sum y_{i}}\cdot (1-P_{a})^n} = [\frac {P_{0}(1-P_{a})}{P_{a}(1-P_{0})}]^{\sum y_{i}}\cdot (\frac{1-P_{0}}{1-P{a}})



\triangleright Solution (b)
\frac{L(P_{o})}{L(P_{a})} \leq k \Leftrightarrow \log \frac{L(P_{o})}{L(P_{a})}\leq \log k $\Leftrightarrow \sum y_{i} \log A +n\cdot \log B \leq \log k$ 

where A=\frac {P_{0}(1-P_{a})}{P_{a}(1-P_{0})}, B=\frac{1-P_{0}}{1-P{a}} from (a), \Rightarrow \sum y_{i} \log \frac {p_{0}(1-P_{a})}{P_{a}(1-P_{0})}\leq \log k - n\cdot \log \frac {1-P_{a}}{1-P_{0}}
Since P_{0} < P_{a} \Rightarrow \frac {P_{0}}{P_{a}} < 1 \Rightarrow \log \frac {p_{0}(1-P_{a})}{P_{a}(1-P_{0})} \leq \log 1 = 0 

\therefore \sum y_{i} \large \geq \frac{\log k - n\cdot \log \frac {p_{0}(1-P_{a})}{P_{a}(1-P_{0})}}{\log (\frac {p_{0}(1-P_{a})}{P_{a}(1-P_{0})})} = (set) 0  

No comments:

Post a Comment