Example)
Let Y~be binomial (15, \frac {1}{3}). Evaluate Var(Y).
(We know variance of binomial distribution is npq. However what if we don't know this formula?)
\triangleright Think First
Var(Y)=E(Y^2)-[E(Y)]^2. So we need the second moment, which means we need to use generating function.
\triangleright Solution
By using generating function, G(z)=E(z^Y)=(q+pz)^n
G'(z)=E(Y \cdot z^{Y-1})=n \cdot (q+pz)^{n-1}\cdot p
So when z=1, G'(1)=E(Y)=np
G''(z)=E(Y (Y-1) \cdot z^{Y-2})=n (n-1)\cdot (q+pz)^{n-2}\cdot p^2,
so when z=1 G''(1)=E(Y^2-Y)=n(n-1)^2p=E(Y^2)-E(Y)=n(n-1)p^2
Var(Y)=n(n-1)p^2+np-(np)^2=n^2p^2-np^2+np-n^2p^2=npq \because(q=1-p)
\therefore Var(Y)=15 \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac {30}{9}
No comments:
Post a Comment