Processing math: 100%

Binomial Distribution Example_using generating function

Example) 

Let Y~be binomial (15, \frac {1}{3}). Evaluate Var(Y).  
(We know variance of binomial distribution is npq. However what if we don't know this formula?) 

\triangleright Think First 
Var(Y)=E(Y^2)-[E(Y)]^2. So we need the second moment, which means we need to use generating function. 

\triangleright Solution
By using generating function, G(z)=E(z^Y)=(q+pz)^n
G'(z)=E(Y \cdot z^{Y-1})=n \cdot (q+pz)^{n-1}\cdot p 
So when z=1, G'(1)=E(Y)=np 

G''(z)=E(Y (Y-1) \cdot z^{Y-2})=n (n-1)\cdot (q+pz)^{n-2}\cdot p^2
so when z=1 G''(1)=E(Y^2-Y)=n(n-1)^2p=E(Y^2)-E(Y)=n(n-1)p^2  

Var(Y)=n(n-1)p^2+np-(np)^2=n^2p^2-np^2+np-n^2p^2=npq \because(q=1-p) 

\therefore Var(Y)=15 \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac {30}{9} 

No comments:

Post a Comment