Example)
Let X_{1}, X_{2} be a random sample of size 2 from Poisson distribution f(x_{1}=\lambda^{x_{1}} \cdot \frac {e^{-\lambda}}{x_{1}!}) . Show T=X_{1}+ X_{2}
\triangleright Solution
The joint distribution of the random sample is \prod_{i=1}^{2}=f(x_{i}|\lambda)=\frac {\lambda^{x_{1}+x_{2}}}{x_{1}!x_{2}!} \cdot e^{-2\lambda}
The joint probability of X_{1}=x_{1}, X_{2}=x_{2} and T=X_{1}+X_{2}=t is
$\rightarrow f(x_{1}, x_{2}, t|\lambda)=\frac {\lambda^t}{x_{1}!x_{2}!} \cdot e^{-2\lambda}$
We know T=X_{1}+X_{2} has a Poisson distribution with parameter 2\lambda
\rightarrow g(t|\lambda)=\frac {(2\lambda)^t}{t!}\cdot e^{-2\lambda}
Consequently, the conditional distribution of the sample, given T=t is
\rightarrow f(x_{1}, x_{2}|T=t; \lambda)=\frac {f(x_{1}, x_{2}, t|\lambda)}{g(t|\lambda)}=\frac {\lambda^t}{x_{1}!x_{2}!}\cdot e^{-2\lambda}/ \frac {(2\lambda)^t}{t!}\cdot e^{-2\lambda}
\therefore This does not depend on the parameter \lambda as the \lambda is cancelled out.
No comments:
Post a Comment