Processing math: 100%

Example) about MLE, Pivot, N-P Lemma

Example) University of Toronto STA355 2013 Final Test Q1.

Suppose that X_{1}, X_{2},...X_{n} are independent exponential random variables with density f(x;\lambda)=\lambda\cdot\exp(-\lambda\cdot x) for x \geq 0, \lambda > 0 

a) Find the MLE of \lambda, and find the limiting distribution of \sqrt{n}(\hat{\lambda_{n}}-\lambda)?

b) A pivot for \lambda is 2\lambda \sum_{i=1}^{n}X_{i}\sim \chi^2_{2n}.
Show how you can use this pivot to construct a CI for \lambda

c) H_{0}: \lambda =1 vs. H_{1}: \lambda > 1 Suing test statistic T=2\sum_{i=1}^{n}X_{i}.
For an alpha level test, for what values of T would reject H_{0}?
=================================================================================
Solution 
a) * First the MLE of \lambda,
  Likelihood, L(\lambda)=\prod_{i=1}^{n} f(x_{i};\lambda)= \lambda^n \cdot \exp(-\lambda \cdot \sum_{i=1}^{n}x_{i})
  Log likelihood, l(\lambda)= n \log \lambda - \lambda \sum_{i=1}^{n}x_{i}
  Taking a derivative w.r.t. \lambda, l'(\lambda)= \frac{n}{\lambda} - \sum_{i=1}^{n}=0
  Therefore, \hat{\lambda_{n}}= \frac{1}{\bar{X}} 
  * Limiting distribution of \sqrt{n}(\hat{\lambda_{n}}-\lambda)
  I(\lambda)=Var(\frac{d}{d\lambda}\log f(x_{i}; \lambda))=Var(\frac{1}{n}-X_{1}) =Var(X_{1})=\frac{1}{\lambda^2} 

b) In this question, follow three steps;
1) Find a pivot statistic (T=h(\theta; X_{i})), From the question, we know 2\lambda \sum_{i=1}^{n}X_{i}\sim \chi^2_{2n}.
2) Pick a & b such that $P(a$P(a< \chi_{2n}^2
3) And rearrange the 2nd step w. r. t. a parameter given a distribution from the question. 
  P(\frac{a}{2\sum X_{i}} < \lambda <\frac{b}{2\sum X_{i}})= 1-2\alpha%. Therefore, CI for \lambda : (\frac{a}{2\sum X_{i}}, \frac{b}{2\sum X_{i}})

c) We need to use the N-P lemma! 
 Under the null hypothesis, if \lambda_{1}>1, \frac{f(x_{1}, x_{2},...,x_{n}; \lambda_{1})}{f(x_{1}, x_{2},...,x_{n}; 1)} = \lambda_{1}^n \cdot \exp((1-\lambda_{1})\sum X_{i})
 This is a decreasing function of \sum_{i=1}^nX_{i} (as 1-\lambda_{1}<0 font="">

 Therefore, the most powerful alpha level test reject the null hypothesis when T < c \cdot \alpha,
 where c \cdot \alpha is the alpha quantile of \chi_{2n}^2.
 

No comments:

Post a Comment