Kolmogorov's Axioms, DeMorgan's Laws
Expected Value & Variance & Covariance
Bayes' Theorem
Independent Event
Inequalities - Proofs and Examples
- Markov Inequality, Chebyshev's Inequality, Cauchy-Schwarz' Inequality
Convergence of Random Variables
- Convergence in Probability / Distribution, Almost Sure Convergence, the Central Limit Teorem
- Intro to statistical inference, MoM and MLE
Hypotesis Testing
- Neyman-Pearson Lemma, Uniform Most Powerful Test, Likelihood Ratio Test
Variance/ Bias Tradeoff
- The Hill Estimator, Kernel Density Estimation, Non-parametric Regression
- Neyman-Pearson Lemma, Uniform Most Powerful Test, Likelihood Ratio Test
Variance/ Bias Tradeoff
- The Hill Estimator, Kernel Density Estimation, Non-parametric Regression
[Discrete Random Variable]
- Mean, Variance, MLE, Sufficient Statistics, Exponential Family
$\triangleright$ Binomial Distribution
- Mean, Variance, MLE, Hypothesis Testing
$\triangleright$ Geometric Distribution
- Mean, Variance, MoM, MLE, Confidence Interval
$\triangleright$ Poisson Distribution
- Mean, Variance, MLE, Confidence Interval
[Continuous Random Variable]
$\triangleright$ Uniform Distribution
$\triangleright$ Exponential Distribution
[Parametric Distribution]
$\triangleright$ The Chi-squared, t, and F distributions
- Definition
$\triangleright$ Binomial Distribution
- Mean, Variance, MLE, Hypothesis Testing
$\triangleright$ Geometric Distribution
- Mean, Variance, MoM, MLE, Confidence Interval
$\triangleright$ Poisson Distribution
- Mean, Variance, MLE, Confidence Interval
[Continuous Random Variable]
$\triangleright$ Uniform Distribution
$\triangleright$ Exponential Distribution
[Parametric Distribution]
$\triangleright$ The Chi-squared, t, and F distributions
- Definition
No comments:
Post a Comment