Processing math: 100%

Hypothesis Testing - Likelihood Ratio Test Example (1)


Example) Mathematical Statistics by Keith Knight, Chapter 7-19

Let X_{1}, X_{2},...X_{n} be iid N(\mu,\sigma^2). Both are unknown. 
We want to test H_{0}: \mu=\mu_{0} vs. H_{1}: \mu \neq \mu_{0}.   

\triangleright Solution.
As we know the MLE of \mu and \sigma ^2 are follwing: \widehat{\mu}=\bar{X}, and \widehat{\sigma^2}=\frac{1}{n}\sum(X_{i}-\bar{X})^2.
Under the H_{0}, the MLE of \widehat{\sigma^2_{0}}= \frac{1}{n}\sum(X_{i}-\mu_{0})^2.

f(x_{1},... x_{n};\mu, \sigma^2)= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}}\exp[-\frac{(x_{i}-\mu)^2}{2\sigma^2}]= (2\pi\sigma^2)^{-\frac{n}{2}} \exp[-\frac{\sum(X_{i}-\mu)}{2\sigma^2}]

* We know the Likelihood Ratio test will reject H_{0} when \Lambda \geq k,
where \Lambda = (\frac{\widehat{\sigma^2_{0}}}{\widehat{\sigma^2}})^\frac{n}{2}, and k is chosen based on the level of the test is specifed \alpha.

\frac{\widehat{\sigma^2_{0}}}{\widehat{\sigma^2}}=\frac{\sum(X_{i}-\mu_{0})^2}{\sum(X_{i}-\bar{X})^2} = 1+\frac{n(\bar{x}-\mu_{0})}{\sum(X_{i}-\bar{x})^2}

* Why? \sum ((X_{i}-\bar{x})+(\bar{x}-\mu_{0}))^2=\sum(X_{i}-\bar{x})^2+n(\bar{x}-\mu_{0})^2 !!
* But Wait!! We can use the T distribution, where T=\frac{\sqrt{n}(\bar{x}-\mu_{0})}{S}, where S^2= \frac{1}{n-1}\sum(X_{i}-\bar{x})^2!
  
Therefore, we can rearrange the EQTN; =1+\frac{1}{n-1}(\frac{n(\bar{x}-\mu_{0})}{s^2})=1+\frac{T^2}{n-1}
Therefore, when H_{0} is true, T has student T distribution with n-1 degree of freedom.

Now we know the distribution of Lambda, we can define the rejection region.

No comments:

Post a Comment