Markov Inequality
(If we don't know what the random variable distribution, but only know its mean, then we can use Markov Inequality)
If x $\geq$ 0 with E(X) is finite, then for any positive constant c, then $\mathsf {P(|X|\geq c)\leq \frac{E(|X|)}{c}}$
Proof
$\mathsf{ P(x\geq c) = \sum_{x:x\geq c} P(X=x)=\sum_{x:x\geq c} \frac{x}{c}P(X=x)}$
$\mathsf {=\frac{1}{c}\sum_{x:x\geq c}x \cdot P(X=x)\leq \frac{1}{c} \sum_{x}x \cdot P(X=x)= \frac{E(X)}{c} }$
Note)
The Chebyshev's Inequality is a special case of Markov's inequality by considering $\mathsf{Y=\frac{(X-\mu)^2}{\sigma ^2}}$
Chebyshev's Inequality
Let X be a random variable with mean $\mu$ and variance $\sigma ^2$,
then for any positive constant k, $\mathsf {P(|X-\mu|\geq k \sigma) \leq \frac{1}{k^2} }$
Proof (1)
$\mathsf {P(|X-\mu|\geq k \sigma) = \sum_{x:|x-\mu|\geq k\sigma}P(X=x) \leq \sum_{x:|x-\mu|\geq k\sigma}(\frac{|x-\mu|}{k \sigma})^2 \cdot P(X=x) }$
$\mathsf {\leq \frac{1}{k^2\sigma^2}E((X-\mu)^2) = \frac{\sigma^2}{k^2 \sigma^2} =\frac{1}{k^2}}$
Proof (2)
$\mathsf {P(|x-\mu|\geq k \sigma) = P((x-\mu)^2\geq k^2 \sigma^2\leq \frac{E(x-\mu)^2)}{k^2 \sigma^2}=\frac{1}{k^2}}$
Example Chebyshev's Inequality)
Let X be a random variable with mean 3, variance 1. What's the maximum of P(X$\geq$ 5)?
Solution) $\mathsf{P(X\geq 5)=P(X-3) \geq 2\leq P(|x-3|) \geq 2\cdot 1 \leq \frac{1}{2^2} = \frac{1}{4}}$
Cauchy-Schwarz' Inequality
Let X, Y be two random variables, $\mathsf {(E(XY))^2 \leq E(X^2)E(Y^2) }$, where the equality holds iff P(aX=bY)=1 for some a,b $\in \mathbb{R}$
Proof
Let Z=aX-bY, $\mathsf { 0 \leq E(Z^2) = a^2E(X^2)-2abE(XY)+b^2E(Y^2) }$
Thus the RHS is a quadratic in the variable a with at most one real root. Its discriminant must be non-positive.$\mathsf { \rightarrow E(XY)^2 - E(X^2)E(Y^2) \leq 0 }$ if b $\neq$ 0
No comments:
Post a Comment