The Chi-squared, t, and F distributions
[1] The Chi-squared ($\chi^2$) distribution
Definition
If $X_{1},...,X_{p}$ are iid N(0,1) and $X=(X_{1},...,X_{p})^T \sim N_{p}$(0,I), (I is the pxp identity matrix)
$V=\left \| X \right \|^2=X^TX$ (The squared length of X), then $V = X_{1}^2+...+X_{p}^2 \sim \chi_{p}^2$
[2] The t-distribution
Definition
Let X~ N(0,1) and $V \sim \chi_{n}^2$ be independent random variables,
then $T= \frac{Z}{\sqrt{V/n}} \sim t_{n}$ with n degrees of freedom.
[3] The F distribution
Definition
Let $U \sim \chi_{m}^2$ and $V \sim \chi_{n}^2$ be independent random variables,
the variables $W=\frac{U/m}{V/n} \sim F_{m,n}$ , the ratio of independent chi-squared variables.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment